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ABSTRACT 

This paper deals with Bayesian and non-Bayesian methods for estimating parameters of the bivariate Pareto (BP) 

distribution based on censored samples are considered with shape parameters λ and known scale parameter β. 

The maximum likelihood estimators MLE of the unknown parameters are derived. The Bayes estimators are 

obtained with respect to the squared error loss function and the prior distributions allow for prior dependence 

among the components of the parameter vector. .Posterior distributions for parameters of interest are derived and 

their properties are described. If the scale parameter is known, the Bayes estimators of the unknown parameters 

can be obtained in explicit forms under the assumptions of independent priors. An extensive computer 

simulation is used to compare the performance of the proposed estimators using MathCAD (14). 

Keywords- bivariate Pareto distribution, censored samples, importance sampling, maximum likelihood 

estimators, prior distribution and posterior analysis. 

 

I. Introduction 

The censoring time (T) is assumed to be 

independent of the life times (X, Y) of the two 

components. The bivariate density function of (X, Y) 

is denoted by ),(, yxf YX . The considered situation 

occurs for example in medical studies of paired 

organs like kidneys, eyes, lungs, or any other paired 

organs of an individual as a two components system 

which works under interdependency circumstances. 

Failure of an individual may censor failure of either 

one of the paired organ or both. This scheme of 

censoring is right censoring. 

There is similar situation in engineering science 

whenever sub-systems are considered having two 

components with life times (X, Y) being independent 

of the life time (T) of the entire system. However, 

failure of the main system may censor failure of 

either one component or both. [See, Hanagal and 

Ahmadi [1]] 

Censoring may also occur in other ways. Patients 

may be lost to follow up during the study, the patient 

may decide to move elsewhere therefore the 

experimenter may not follow him or her again, or the 

patients may become non-cooperative which is due to 

some bad side effects of the therapy. Such cases are 

called withdrawal from the study. A patient with 

censored data contributes valuable information and 

should therefore not be omitted from the analysis. 

Hanagal [2, 3] derived maximum likelihood 

estimators of the parameters for the case of univariate 

right censoring. 

The rest of the paper is organized as follows. In 

Section 2, the bivariate Pareto distribution is 

introduced, the estimation of bivariate Pareto 

distribution based on censored samples is proposed in 

Section 3. Section 4 discussed the Bayesian 

parameters estimation for Pareto distribution based 

on censored samples. The maximum likelihood 

estimates (MLEs) of the parameters of the bivariate 

Pareto of Marshall-Olkin are obtained based on 

censored samples in Section 5. Finally, simulation 

results and conclusions are laid out in Section 6. 

 

II. The bivariate Pareto distribution 
The Pareto distribution was first proposed as a 

model for the distribution of incomes, it is also used 

as a model for the distribution of city populations 

within a given area. [See,Johnson andKotz [4]]. 

The probability distribution function and the 

cumulative distribution functions are defined 

respectively by the following functions:                   
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Veenus and Nair[5] proposed a bivariate Pareto (BP) 

distribution with many interesting properties like 

marginal Pareto, bivariate loss of memory property 

and they proposed the survival function  for 0, yx

, 0,0 21   and 03    as follows: 
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321    

Also they proposed the joint probability density 

function ),(, yxf YX  of X and Y as follows: 

 
 

 
 




































































yxif
x

xyif
yx

yxif
yx

yxf YX






















                         

),(

1

3

11

2

231

11

2

132

,

231

321

                                                                           

 (4) 

Where 

321  
 

 

III. Estimation for BP Distribution Based 

on Censored Samples 
The univariate random censoring scheme given 

by Hanagal [2] is used for estimating the bivariate 

life time distribution, which takes into account that 

individuals do not enter at the same time the study 

and a withdrawal of an individual will censor both 

life times of the components which in the sequel will 

be called implants, because the model was developed 

and applied in the framework of teeth implants for 

upper and lower jaws. 

Suppose that there are n independent pairs of 

implants under study, where the i
th

pair of implants 

have life times  ii yx ,   and a censoring time ( it  ). 

Let the censored random life of the i
th

 pair be denoted 

by  ii yx ,  . 

Then  ii yx ,  are defined as follows: 
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There are six different types of events which might 

occur with respect to  ii yx , , ni ,,1 . These are 

the following: 

1. Type 1: 
iii tyx   

2. Type 2: 
iii txy   

3. Type 3: 
iii tyx   

4. Type 4: ytx ii   

5. Type 5: 
iii xty   

6. Type 6: ),min( iii yxt   

Let n1, n2, n3, n4, n5 and n6 be the numbers of 

observations representing the differenttypes of events 

with 654321 nnnnnnn  . Then 

the likelihood function L for a sample

 ),(,),,( 11 nn yxyx  is given as follows: 
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Then the log - likelihood function L for a sample

 ),(,),,( 11 nn yxyx  is given by: 
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Suppose the scale parameter  is known then, 
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IV. Bayesian Parameter Estimation for 

BP Distribution Based on Censored 

Samples 
This Section deals with the Bayesian estimate of 

BP estimators based on censored samples when the 

scale parameter   is known; let the same conjugate 

prior on 21,  and 3 is given as follow. 

)9(3,2,1 ,              )exp()(
1
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(10)                              )exp()( 4
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where 1 , 2 , 3 and  have independent gamma  

priors. 

We can rewrite the likelihood equation from equation 

(8) as follow 
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The joint posterior density of 1 , 2 , 3 and  will 

be : 
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Where 

lnna l  1411    , jnna j  2522  ,

jlnnna lj  33213   

and 46544  nnna  

Therefore, under the assumption of 

independence of 1 , 2 , 3 and , it is possible to 

get the Bayes estimates of 1 , 2 , 3 and  in 

closed forms, explicitly under the squared error loss 

function using (12), as follows: 
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V. Non Bayesian Parameter Estimation 

for BP Distribution Based on 

Censored Samples 
This section deals with MLE of the unknown 

estimators, it is well known that the closed forms of 

maximum likelihood estimators of the unknown 

parameters do not always exist. 

From equation (8) take the derivative of the log 

likelihood Lln   with respect to each parameter set 

the partial derivatives equal to zero. 

Therefore the normal equations are 
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The likelihood equations (19), (20) and (21) may 

be solved by a Newton-Raphson procedure, where 

thesecond order partial derivatives of the log-

likelihood function are given by: 
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The observed Fisher information matrix, I is a 

(4×4) matrix, where the entries are second order 

partial derivatives displayed above. 
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The inverse of the observed Fisher information 

matrix is the observed variance-covariance matrix 

of )ˆ,ˆ,ˆ,ˆ(ˆ
321

  , the MLEof the parameter

),,,( 321
  . 

The quantity )ˆ(  n  has an asymptotic 

multivariate normal distribution with mean vector 

zero and observed variance-covariance matrix Σ. 

 

VI. Simulation Study 
In this section, an extensive numerical 

investigation using Mathcad (14) will be carried out 

to estimate the parameters of the bivariate Pareto 

distribution based on censored samples. The 

algorithm for this estimation can be summarized in 

the following steps: 

 Step(1): Generate iu  using the Pareto 

distribution with parameter  
i    for .3,2,1i  

 

 Step (2): Let ),min( 31 uuX 
 

and 

),min( 32 uuY 
 
and, therefore, ),( YX  follows a 

bivariate Pareto distribution of Marshall-Olkin 

type. 

 

 Step (3): Generate it using the two-parameter 

exponential distribution with parameters  ,

where st i are the censoring times. 

 

 Step (4): Generate 1000 sets of samples for two 

cases with respect to the si , each set consisted 

of three samples with sizes n = 20, 35 and 50. 

 

 Step (5): The estimates are obtained by taking 

the mean of the 1000 maximum likelihood 

estimates and the mean of the 1000 standard 

deviations from the 1000 samples of size n = 20, 

35, and 50. The estimates of the standard 

deviation of the maximum likelihood estimates 

of ),,,( 321   are obtained by taking square 
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root of the diagonal elements of the inverse of 

the observed Fisher information matrix. 

 

 Step (6): The Bayes estimates of 1 , 2 , 3 and

  are computed based on squared error loss 

function using equations 15, 16, 17 and 18. 

 

 Step (7): The squared deviations are computed. 

 

 Step (8): The estimated risk (ER) of the Bayes 

estimate is obtained. 

 

VII. Conclusion 
Simulation results for the corresponding 

maximum likelihood estimates and the Bayes 

estimates are summarized in Tables 1 and 2. From 

these Tables, the following conclusions can be 

observed on the properties of estimated parameters: 

It has been observed that there is a direct proportional 

relationship between MLE estimators’ values and   

values. The estimators’ values move away from the 

real parameters values as long as the   value 

increases. In contrast, it has been seen that standard 

errors has an indirect proportional relationship with 

when   value. 

Furthermore, the results show that whenever the 

sample increases the MLE estimators are more close 

to real values with less standard error, which 

significantly confirms the consistency property. 

Referring to tables (1&2) it is obvious that MLE and 

Bayesian estimators’ values are more close to the real 

parameter values in case of  =1 unlike when  =2 

and the standard error is seen less at  =1 rather than 

at  =2. 

Table (2) explores the Bayesian estimators at 

different values for the prior distribution parameters (

4321 ,,,  ) and ( 4321 ,,,, bbbb )and provides the 

Estimated Risk (ER) depending on the squared error 

loss function. The Bayesian estimators and ER have 

been observed to get affected by different values of 

prior distribution and  . 

Additionally it has been seen that Bayesian 

estimators have a closed form, which it is highly 

recommended to be gone through and study its 

properties as a future work. 

 

Table (1) :ML estimators and SE of the point estimate from bivariate Pareto Distribution and 1000 

repetitions for different sizes of samples 

Parameters 1  2  3    
1  2  3    

1.8 1.7 1.5 0.3 0.8 0.6 0.9 0.2 

  20n  

1 
MLE 1.731 1.545 1.622 0.244 0.712 0.522 0.781 0.156 

SE 0.087 0.122 0.107 0.071 0.089 0.113 0.107 0.079 

2 
MLE 1.423 1.332 1.243 0.211 0.624 0.456 0.641 0.149 

SE 0.287 0.345 0.432 0.113 0.213 0.296 0.315 0.124 

 35n  

1 
MLE 1.756 1.612 1. 573 0.267 0.744 0.567 0.823 0.172 

SE 0.066 0.109 0.092 0.054 0.073 0.104 0.098 0.065 

2 
MLE 1.487 1.384 1.324 0.227 0.635 0.478 0.674 0.158 

SE 0.253 0.299 0.387 0.099 0.198 0.251 0.288 0.107 

 50n  

1 
MLE 1.783 1.623 1.493 0.279 0.778 0.589 0.887 0.203 

SE 0.064 0.097 0.087 0.049 0.047 0.091 0.076 0.031 

2 MLE 1.557 1.427 1.411 0.243 0.654 0.492 0.695 0.173 

 SE 0.231 0.267 0.356 0.081 0.141 0.221 0.253 0.082 
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Table (2) :Bayes estimators (BE) and Estimated Risk (ER) of the point estimate from bivariate Pareto 

Distribution and 1000 repetitions 

Parameters 1  2  3    
1  2  3    

1.8 1.7 1.5 0.3 0.8 0.6 0.9 0.2 

  5.1,6.1,7.1,3.1 4321   2.0,3.0,4.0,5.0, 4321  bbbb  

1 
BE 1.433 1.356 1.358 0.277 0.655 0.498 0.692 0.153 

ER 0.277 0.124 0.147 0.109 0.133 0.243 0.422 0.082 

2 
BE 1.324 1.311 1.233 0.255 0.627 0.466 0.647 0.147 

ER 0.297 0.139 0.323 0.117 0.218 0.299 0.318 0.135 

 5.0,6.0,7.0,3.0 4321   2.1,3.1,4.1,5.1, 4321  bbbb  

1 
BE 1.556 1.633 1. 532 0.282 0.678 0.511 0.724 0.174 

ER 0.244 0.111 0.123 0.091 0.121 0.213 0.379 0.073 

2 
BE 1.471 1.309 1.314 0.243 0.631 0.471 0.681 0.156 

ER 0.314 0.143 0.388 0.123 0.188 0.249 0.287 0.101 
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